

Near-Term Operational Opportunities to Reduce Aviation Environmental Impact

Karen B. Marais (Purdue) kmarais@purdue.edu
R. John Hansman (MIT) rjhans@mit.edu
Tom G. Reynolds (MIT) tgr@mit.edu
Jonathan Lovegren (MIT) lovegren@mit.edu

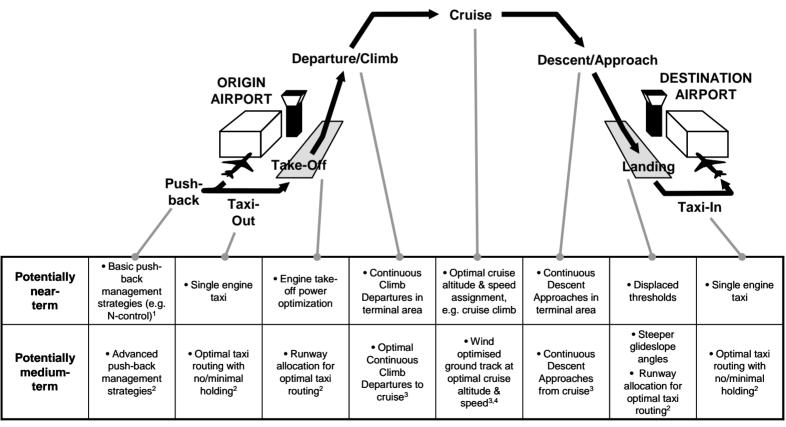
Motivation

- Need to identify and evaluate ways to reduce the environmental impacts of aviation in the near-term with minimal implementation barriers
- Minor adjustments to operating procedures or limited equipment/infrastructure changes
 - Some techniques already being implemented, e.g. CDAs
 - Some still in research stage, e.g. surface movement optimization
 - Others yet to be fully defined
- Require effort to systematically identify, evaluate and prioritize potential near-term operational changes
- Joint effort between Purdue and MIT sponsored under the FAA Partnership for Air Transportation Noise and Emissions Reduction (PARTNER) Center of Excellence

Approach

Stage 1

- 1. Identification of Benefits Pool via Literature Review & System Analysis
- 2. Obtain Stakeholder Input
- 3. Categorize Mitigation Options
- 4. Evaluate Potential Environmental Impact of Identified Mitigation Options
- 5. Identify Barriers to Implementation of Identified Mitigation Options
- 6. Identify Most Promising Mitigation Options for Detailed Investigation in Stage 2


Stage 2

- Investigate Environmental and Operational Impact of Selected Mitigation Options
- 8. Stakeholder Interviews on Selected Mitigation Options
- 9. Document and Disseminate Results
- Project started recently
- Currently obtaining stakeholder input

Operational Areas Targeted

Preliminary list created of potential study areas

Notes:

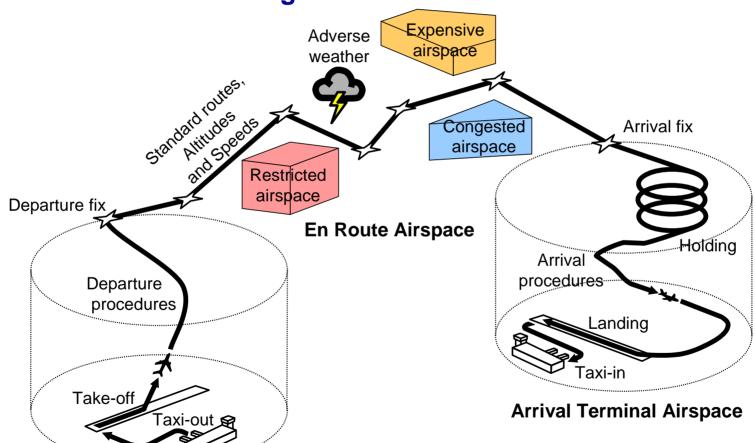
¹ Proposed to be tested in PARTNER/Lincoln Lab field trial

² Under development in Lincoln Lab Arrival/Departure Management Tool (A/DMT) project

³ Part of NextGen/SESAR objectives

⁴ Part of AIRE & ASPIRE objectives for oceanic operations

Areas of Aviation Climate Impact


Potential solutions separated into four climate impact categories

- Fuel Burn / CO₂ Emissions
- Climate Change
- Surface Emissions
- Noise

Air Traffic Inefficiencies

- Based on prior ATM studies
- Inefficiencies result in higher fuel burn

Departure Terminal Airspace

Fuel Burn / CO₂ Emissions

- Horizontal Routing Efficiency
 - Wind optimized routing (enabled by National Route System)
 - Closer spacing of routes
- Vertical Routing Efficiency
 - Reduced cruise climb step size
 - > RNP/RNAV with multiple lanes
 - Continuous cruise climbs
 - Optimized Profile Descent (OPD)
- Cruise Mach reduction
- Tightened Arrival and Departure Standard Routings
 - RNP Enables SIDs and STARS
 - OPDs
- Improved Airline/ATC Coordination on Efficiency
 - Tactical CDM
 - Airborne Flow Program (AFP)
- Policy Measures
 - Fuel Tax
 - CO₂ Caps
 - Incentivizing Modal Shifts for Short Range
 - > Slot Access, Air Navigation Fees
 - Incentivizing Larger Guage

Climate Change

Contrail Minimization

- Restrict/Limit Access to Forecast High Contrail Potential Zones
 - > Similar to CCFP and Convective Weather Procedures
- Clearance Procedures, Forecasting, Monitoring
- Conflicts with most fuel efficient route, hard to qualify tradeoffs
- Monitoring?
- Management of Emergent Climate Change Sources

Surface Emissions

- Single-engine taxi
- Pushback and queue management strategies
 - Ground power at penalty box locations
- Surface Taxi Route Optimization
 - Runway assignments
- Tow-Outs Using Efficient Tugs

Noise

Advanced Approach Procedures

- Low Power/Low Drag
- Continuous Descent Approach (RNAV/RNP)
- Optimized Profile Descent (OPD)
- Decelerating Approach
- Increased Glide Slope Angle
- Displaced Thresholds
- Optimal thrust cutback on takeoff
- Noise Optimized Trajectories
 - Avoid flights over noise sensitive areas
 - > New trajectories can open door to environmental review
 - Lateral and vertical trajectory control

Other Ideas?